トップページ解析(シミュレーション) > 温度サイクル試験の寿命予測・改善

温度サイクル試験の寿命予測・改善

【目次】

製品の温度サイクル試験において寿命改善対策に追われていませんか?
パッケージ構造を考慮したシミュレーション結果のご提供により、温度サイクル試験の寿命を改善し、不要な評価のコスト削減や寿命改善に向けた対策をサポートします。

 

電子機器の信頼性確保

電子機器の市場動向は小型化・高密度化を求めており、ダウンサイジングが進む中、高いスペックの信頼性(寿命、温度領域等)の要求が急増しています。その中でも車両用電子機器や産業用電子機器は,民生用電子機器と比べて使用環境が苛酷であり、夏の炎天下から寒冷地に至るまで、さまざまな環境下で使用されます。そのため、温度変化に対する長期的な信頼性の確保がよりいっそう重要となってきています。

 

熱疲労による破壊モード

実使用環境下におけるはんだ接合部の問題の一つが、熱に基因する熱疲労破壊です。電子部品と基板は多くの場合、線膨張係数が異なるため、電子部品の自己発熱や外部からの輻射熱などによる温度変化が発生すると部材間に熱膨張差が生じ、構造強度上最も弱いはんだ接合部周辺に応力が集中します。この温度変化の繰り返しによって、はんだ接合部や配線パターンに熱疲労によるクラックが発生し、最終的に破断・断線に至ります。

はんだ接合部の断面研磨写真(温度サイクル試験の不良品)
QFP
QFP

はんだ接合部の断面研磨写真(温度サイクル試験の不良品)
BGA
BGA

はんだ接合部の断面研磨写真(温度サイクル試験の不良品)

電子機器内の基板には、大小さまざまな電子部品や半導体デバイスが実装されています。その中で電子機器の高性能化(小型化)に向けて、使用する電子部品は変化していきますが、新しい電子部品に対する設計ルールがない場合があります。

BGA(Ball Grid Array) やCSPChip Size Package)などのパッケージは、QFPQuad Flat Package)などの従来のパッケージに比べると、リード部による応力緩和が期待できないため、パッケージと実装する基板との熱膨張量差の影響が大きくなり、信頼性の確保が難しいパッケージ構造となります。

QFP(リード部)
QFP(リード部)

BGA(はんだ接合部)
BGA(はんだ接合部)

温度変化によるQFPBGAの変形傾向の差異
(シミュレーション結果)

 

温度サイクル試験

電子機器におけるはんだ接合部の熱疲労破壊を対象とした寿命評価・予測は重要であり、製品開発では長期的な信頼性を確認するために加速試験(温度サイクル試験※)を実施しています。

※半導体デバイスの環境及び耐久性試験方法
  JEITA ED-4701/100A(試験方法105A 温度サイクル試験)

しかし、温度サイクル試験は、結果を得るには数週間〜数ヶ月の期間を要します。また、現在の電子機器は構造が複雑、かつ電子部品が密集して基板に実装されているため、温度サイクル試験だけでは不良が発生しても、その要因・対策が分かりません。そのため、製品開発では設計・試作・試験を繰り返し、結果として製品開発期間が長くなり、開発コストが高くなる場合があります。

 

温度サイクル試験の寿命予測

温度サイクル試験におけるはんだ接合部の寿命予測はひずみ振幅を考慮した(1)(2)式で示す修正コフィン・マンソン(Modified Coffin-Manson)則が一般的に知られており、シミュレーションでひずみ振幅を計算して、寿命を予測します。

CSP及びBGAパッケージの実装状態でのはんだ接合部の耐久試験方法
 JEITA ET-7407B(附属書A はんだ接合部の温度サイクル試験の加速性について)


(2)式より、市場条件と試験条件の加速係数Afを求めると、(3)式となる。